Photon counting interferometry to detect geontropic space-time fluctuations with GQuEST

Daniel Grass 1/3rd of Slides by Sander Vermeulen *McCuller Lab California Institute of Technology*

GQuEST

Outline

1. Introduction

- 2. (Limited) Theoretical Background
- 3. Laser Interferometry & Homodyne Readout
- 4. Photon Counting Readout
- 5. Classical Noise
- 6. Experimental Implementation

Introduction

• Two 5 m, co-located Michelson laser interferometers

• Search for holographic quantum space-time fluctuations i.e. Gravity from the Quantum Entanglement of Space-Time

• Novel 'photon counting readout' evades quantum shot noise

• Photon Counting Demonstrator is currently under construction

Why use an interferometer to detect quantum gravity?

Gravity is Geometry

Gravity is Quantum-Mechanical

 \rightarrow Geometry is Quantum-Mechanical

 \rightarrow Distance measurements exhibit quantum fluctuations

Why not just use LIGO?

Theoretical Background

Quantum Mechanics and General Relativity

- Quantum Mechanics and General Relativity make very accurate predictions in their own realms
- These two theories are incompatible
- Many theories exist, like String Theory, LQG, etc, but either don't make testable predictions or their predictions have not been supported by experiment
- Holographic quantum gravity theories point to detectable spacetime fluctuations

Planck-scale random walk noise

- Step size: $\delta l \sim l_{
 m P}$
- Number of steps $N \sim \frac{L}{l_{\rm P}}$

Total length: $L \pm \sqrt{N} \cdot \delta l \sim L \pm \sqrt{L l_P}$

Proposed Signal from the "Pixellon" Model

- Associate a stochastic scalar field to holographic degrees of freedom: $\,\phi(ec{x},t)$
- The field gravitates, perturbing the metric: $ds^2 = -dt^2 + (1-\phi)\left(dr^2 + r^2 d\Omega^2\right)$

 \rightarrow IFO signal spectrum:

Important Features: low amplitude, high frequency, stochastic, and has medium-range spatial correlations

Spacetime Fluctuations in LIGO

- Looking at frequencies lower than expected signal peak
- Ongoing work to look at peak signal frequency

10

Laser Interferometry & Homodyne Readout

Laser interferometers: differential phase measuring machines

Phase modulation of the carrier field:

$$E_{\rm C}(t) = |E_{\rm C}|e^{i\omega_{\rm C}t} \longrightarrow E(t) = |E_{\rm C}|e^{i(\omega_{\rm C}t + \delta\phi(t))}$$

Field in signal arm

Sideband fields

 $E(t) = |E_{\rm c}|e^{i(\omega_{\rm c}t + \delta\phi(t))}$ $\delta\phi(t) \equiv \Phi\sin(\Omega t)$ Expansion for $\Phi \ll 1$ $E(t) = |E_{\rm c}|e^{i(\omega_{\rm c}t + \Phi\sin(\Omega t))} \approx |E_{\rm c}|e^{i\omega_{\rm c}t} \left(1 + \frac{i}{2}\Phi\left[e^{-i\Omega t} + e^{+i\Omega t}\right]\right)$ Carrier Amplitude $\rightarrow E(t) \approx E_{\rm c} + E_{\rm sig}$ Carrier field: Signal sideband Signal sideband $\overline{E}_{
m c} = |E_{
m c}|e^{i\omega_{
m c}t}$ + Signal sideband fields $E_{\rm sig} = \frac{i}{2} |E_{\rm c}| \Phi \left[e^{i(\omega_{\rm c} - \Omega)t} + e^{i(\omega_{\rm c} + \Omega)t} \right]$ $\omega_c - \Omega$ ω_c $\omega_c + \Omega$ Frequency

Sideband fields (with more complicated $\delta \phi(t)$) $\delta\phi(t) \equiv A_{\rm sig}(t) \sim \mathcal{F}^{-1} \left\{ \sqrt{S_{\phi}^{\rm sig}(f)} \right\} e^{i\eta_{\rm rand.}(t)}$ $\overline{E}(t) = |E_{\rm c}| e^{i(\omega_{\rm c} t + \delta \phi(t))}$ Expand for $A_{
m sig} \ll 1$ $E(t) = |E_{\rm c}|e^{i\left(\omega_{\rm c}t + A_{\rm sig}(t)\right)}$ $\approx |E_{\rm c}|e^{i\omega_{\rm c}t} \left[1 + iA_{\rm sig}(t)\right]$ Amplitude Carrier $\rightarrow E(t) \approx E_{\rm c} + E_{\rm sig}$ Carrier field: Signal sideband $E_{\rm c} = |E_{\rm c}|e^{i\omega_{\rm c}t}$ + Signal sideband fields $E_{\rm sig} = i |E_{\rm c}| e^{i\omega_{\rm c}t} A_{\rm sig}(t)$ $\omega_{
m c}$ Frequency

Homodyne Readout

Introduce a small static arm-length difference

→ Allows carrier field to leak into the output: $E_{\rm l.o.} = |E_{\rm l.o.}|e^{i\omega_{\rm c}t}$

Sidebands beat with 'local oscillator'

Quantum Shot Noise

$$E(t) = |E_{\rm c}|e^{i\omega_{\rm c}t} + \sigma_{\phi}$$

Quantum noise 'sidebands':

$$E_{\rm QN} = \sqrt{\frac{\hbar\omega_c}{2}} \sum_{\omega = -\infty}^{\infty} \left[\hat{a}^{\dagger} e^{i(\omega_c + \omega)t} + \hat{a} e^{i(\omega_c - \omega)t} \right]$$

Homodyne Readout: Shot Noise

Quantum uncertainty produces measured shot noise

⁺ smaller terms

Homodyne Readout: Statistics with Shot Noise

$$P(t) = |E(t)|^{2} = |E_{1.o.}|^{2} + 2|E_{1.o.}||E_{c}|A_{sig}| + 2|E_{1.o.}|E_{QN}$$

$$+ smaller terms$$

$$Detection statistic:$$

$$\chi^{2} = \int \frac{(S_{meas}(f) - S_{noise})^{2}}{Var(S_{meas})} df \propto \left(\frac{S_{signal}}{S_{noise}}\right)^{2}$$

$$\xrightarrow{\text{Amplitude}}$$

$$\xrightarrow{\text{Amplitude}}$$

Time for SNR = 1 for a realistic 5 m IFO: 1 week

Can we do better?

 \rightarrow Yes, with photon counting!

Photon Counting

Photon Counting: Intuition

- Homodyne readout measures time-dependence, i.e. phase/frequency of the signal
- The signal model does not specify these properties

→ time-dependence/phase/frequency info is useless for finding a signal that is stationary/stochastic/broadband

→ Devise a quantum measurement that does not provide useless info, in exchange for useful info

Photon Counting

- Consider an interferometer with no local oscillator (and no classical noise)
- All photons measured are signal photons!

Photon Counting: Statistics

Detection statistic:

Recall for Homodyne readout:

Photon Counting vs. Homodyne Comparison

Time for SNR = 1 with Homodyne Readout: $5.7 \cdot 10^5$ s = 1 week

Time for SNR = 1 with Photon Counting: 0.25 s

Photon Counting: Filtering

Narrowband optical filter

or

$$= \underbrace{|E_{\text{l.o.}}|}_{\to 0} (|E_{\text{l.o.}}| + 2|E_{\text{c}}|A_{\text{sig}} + 2E_{\text{QN}}) + E_{\text{c}}|^{2}A_{\text{sig}}^{2} + 2|E_{\text{c}}|A_{\text{sig}}E_{\text{QN}} + E_{\text{QN}}^{2}$$

Classical Noise

Classical Noise

• Classical noise looks like the stochastic signal

Classical Noise: Mirror Thermal Noise

Solid Normal Modes

Longitudinal

Transverse

Frequency [MHz]

Filter Away Noise Peaks

 $\mathrm{SNR}_{\mathrm{count}}^2 = \frac{T\Delta\epsilon}{4} \frac{\left(\overline{S}_L^{\phi}\right)^2}{\overline{S}_L^q \overline{S}_L^c}$

Time for SNR of 1 with Filtered Photon Counting: $8.6 \cdot 10^3$ s = 2.4 hours

Experimental Implementation

Configuration

- Using a power-recycled Michelson interferometer
- Photon counting readout scheme
- Can still collect data with homodyne readout and use it for feedback control
- 10 W input, 10 kW circulating power, 100 mW output power
- 1550 nm light for use with Silicon Optics

4 Requirements for Photon Counting

1. Carrier suppression

4 Optical Bandpass Filters with 22 orders of magnitude suppression in power

2. Low Dark Count Rate Detector

Single Photon Detector (SNSPD)

3. Low Classical Noise

Detector R&D

4. Small Contrast Defect

Excellent Controls and additional R&D

Optical Bandpass Filters

- 6 orders of magnitude of carrier suppression each
- Bowtie Cavity Configuration
- 4 cavities in total to suppress carrier
- Multiple cavities also prevent higher-order spatial modes and frequency modes from leaking through
- 25 kHz integrated bandwidth
- Locked using 775 nm light

SNSPD: Superconducting Nanowire Single Photon Detector

- Used at the end of the Photon Counting Readout
- Aiming for a Dark Count Rate an order of magnitude below the signal level (which would be 10⁻⁴ Hz)
- Requires temperatures as low as 0.8 K

Low Classical Noise

 10^{-18}

(I) H

E

Displac 10-22

 10^{-2}

10

15

20

Frequency (MHz)

25

- Substrate Thermorefractive Noise would dominate in a standing wave interferometer
- Necessitates a traveling wave interferometer to avoid this noise

 Need 2 mm thick mirrors to space out noise peaks

Small Contrast Defect

- Thin Mirrors are susceptible to curvature due to coating stress
- Curved mirrors lens light into higher order modes
- End Mirrors with different surfaces create extra light that might leak through our filters
- This extra, unwanted light is called "contrast defect"
- Designed and tested a Mirror Mount to flatten the mirror

Good Photons vs Bad Photons

- Classical Noise still above Signal
- Two phase-locked, co-located Power Recycled Interferometers to crosscorrelate
- Assuming stationarity of signal and noise, only need one photon counting readout
- Can switch whether the output has uncorrelated noise or signal + uncorrelated noise
- Correlated noise predicted to be below signal
- Outlook: 5σ test of quantum gravity within a day

Progress Photos

Summary

- 1. Holographic Quantum Gravity implies (barely) measurable signals
- 2. Conventional homodyne readout of interferometers is sub-optimal to detect this signal
- 3. Photon counting readout ignores phase information, which yields a quantum advantage
- 4. If classical noise is mitigated to below the quantum noise, GQuEST can provide a test of quantum gravity within days

Paper QR Code

Thank you!

Extra Slides

Signal in 3rd Generation Gravitational Wave Detectors

Bub et al., 2023 47

Bowtie Cavity Laser Design

Custom Mirror Mount

49

Laser Filter Cavity Justification

Better Filter Justification

