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• Two 5 m, co-located Michelson laser interferometers

• Search for holographic quantum space-time fluctuations
   i.e. Gravity from the Quantum Entanglement of Space-Time

• Novel ‘photon counting readout’ evades quantum shot noise

• Photon Counting Demonstrator is currently under construction

Introduction
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Why use an interferometer to detect quantum gravity?
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Gravity is Quantum-Mechanical

Gravity is Geometry 

→ Geometry is Quantum-Mechanical

→ Distance measurements exhibit quantum fluctuations

SMV



Why not just use LIGO?
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@ 100 Hz @ 18 MHz

Sensitivity to length changes:

SNR2 Scaling

LIGO GQuEST

SMV



Theoretical Background



Quantum Mechanics and General Relativity
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• Quantum Mechanics and General Relativity make 
very accurate predictions in their own realms

• These two theories are incompatible
• Many theories exist, like String Theory, LQG, etc, 

but either don’t make testable predictions or their 
predictions have not been supported by 
experiment

• Holographic quantum gravity theories point to 
detectable spacetime fluctuations



Light cone fluctuations accumulate like a random walk

• Step size:

• Number of steps

Total length:

Planck-scale random walk noise
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Proposed Signal from the “Pixellon” Model

9

• Associate a stochastic scalar field to holographic degrees of freedom:

• The field gravitates, perturbing the metric:

→IFO signal spectrum:

Important Features: low amplitude, high frequency, stochastic, and has medium-range spatial correlations



Spacetime Fluctuations in LIGO

10

• Looking at frequencies 
lower than expected 
signal peak

• Ongoing work to look at 
peak signal frequency

Bub et al., 2023



Laser Interferometry & Homodyne Readout



Laser interferometers: differential phase measuring machines

Length Perturbations in one arm:
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Field in signal arm

Phase modulation of the carrier field:

SMV



Expansion for 

Sideband fields
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Carrier field:

→ 

Frequency

Amplitude
Carrier

Signal sidebandSignal sideband

+ Signal sideband fields

SMV



Sideband fields (with more complicated            ) 
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Carrier field:

→ 

Frequency

Amplitude

Signal sideband

Carrier

Expand for 

+ Signal sideband fields

SMV



Homodyne Readout
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Introduce a small static arm-length difference

→ Allows carrier field to leak into the output: 

Frequency

Power

Sidebands beat with ‘local oscillator’
SMV
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Quantum Shot Noise

Frequency

Amplitude

Quantum noise ‘sidebands’:

SMV



Homodyne Readout

Quantum uncertainty produces measured shot noise

Frequency

Amplitude
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: Shot Noise

SMV



Homodyne Readout: Statistics with Shot Noise
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Detection statistic:

Can we do better?

→Yes, with photon counting!

Frequency

Amplitude

4 orders of magnitude

Time for SNR = 1 for a 
realistic 5 m IFO:
1 week

SMV



Photon Counting



Photon Counting: Intuition
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• Homodyne readout measures time-dependence, i.e. phase/frequency 
of the signal

• The signal model does not specify these properties

→ time-dependence/phase/frequency info is useless for finding a signal 
that is stationary/stochastic/broadband 

→ Devise a quantum measurement that does not provide useless info, 
in exchange for useful info

SMV



Photon Counting
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• Consider an 
interferometer with no 
local oscillator (and no 
classical noise)

• All photons  measured 
are signal photons!



Photon Counting: Statistics

Detection statistic:
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Recall for Homodyne readout:

SMV



Photon Counting vs. Homodyne Comparison
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Time for SNR = 1 with Homodyne Readout: 
5.7 ⋅ 105 s =  1 week

Time for SNR = 1 with Photon Counting: 
0.25 s



Photon Counting: Filtering
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Narrowband optical filter

or or ?

SMV



Classical Noise



Classical Noise

• Classical noise looks like the stochastic signal
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• Recall



Classical Noise: Mirror Thermal Noise
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Longitudinal Transverse
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Solid Normal Modes
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Filter Away Noise Peaks

Time for SNR of 1 with 
Filtered Photon Counting: 

8.6 ⋅ 103 s = 2.4 hours



Experimental Implementation
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Configuration

• Using a power-recycled 
Michelson interferometer

• Photon counting readout scheme
• Can still collect data with 

homodyne readout and use it for 
feedback control

• 10 W input, 10 kW circulating 
power, 100 mW output power

• 1550 nm light for use with 
Silicon Optics



4 Requirements for Photon Counting

1. Carrier suppression

2. Low Dark Count Rate Detector

3. Low Classical Noise

4. Small Contrast Defect
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4 Optical Bandpass Filters 
with 22 orders of magnitude 
suppression in power

Single Photon Detector (SNSPD)

Detector R&D

Excellent Controls and 
additional R&D
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Optical Bandpass Filters

• 6 orders of magnitude of carrier 
suppression each

• Bowtie Cavity Configuration

• 4 cavities in total to suppress 
carrier

• Multiple cavities also prevent 
higher-order spatial modes and 
frequency modes from leaking 
through

• 25 kHz integrated bandwidth

• Locked using 775 nm light
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SNSPD: Superconducting Nanowire Single Photon Detector

• Used at the end of the Photon 
Counting Readout

• Aiming for a Dark Count Rate an 
order of magnitude below the 
signal level (which would be 10−4 
Hz)

• Requires temperatures as low as 
0.8 K
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Low Classical Noise

• Substrate Thermorefractive Noise 
would dominate in a standing wave 
interferometer

• Necessitates a traveling wave 
interferometer to avoid this noise

• Need 2 mm thick mirrors to space 
out noise peaks
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Small Contrast Defect

• Thin Mirrors are susceptible to 
curvature due to coating stress

• Curved mirrors lens light into 
higher order modes

• End Mirrors with different surfaces 
create extra light that might leak 
through our filters

• This extra, unwanted light is called 
“contrast defect”

• Designed and tested a Mirror 
Mount to flatten the mirror



Good Photons vs Bad Photons
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• Classical Noise still above Signal
• Two phase-locked, co-located Power 

Recycled Interferometers to cross-
correlate

• Assuming stationarity of signal and noise, 
only need one photon counting readout

• Can switch whether the output has 
uncorrelated noise or signal + 
uncorrelated noise

• Correlated noise predicted to be below 
signal

• Outlook:         test of quantum gravity 
within a day



Progress Photos
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1. Holographic Quantum Gravity implies (barely) measurable signals

2. Conventional homodyne readout of interferometers is sub-optimal to 
detect this signal

3. Photon counting readout ignores phase information, which yields a 
quantum advantage

4. If classical noise is mitigated to below the quantum noise, GQuEST can 
provide a test of quantum gravity within days

Summary
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Paper QR Code
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Thank you!
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Light cone fluctuations accumulate like a random walkSignal in 3rd Generation Gravitational Wave Detectors

47Bub et al., 2023



Light cone fluctuations accumulate like a random walkBowtie Cavity Laser Design
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Light cone fluctuations accumulate like a random walkCustom Mirror Mount
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Light cone fluctuations accumulate like a random walkLaser Filter Cavity Justification
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Light cone fluctuations accumulate like a random walkBetter Filter Justification
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